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Reconstructing the evolutionary history of a tumor is a 
challenging and important open question
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The perfect phylogeny regression problem

Trees are scored by repeatedly* solving the perfect phylogeny regression 
problem:

(PPR)

* This approach is taken in CITUP (Malikic et al., 2015), LICHeE (Popic et al.,. 2015), AncesTree (El-Kebir et al.2015), PairTree 
(Wintersinger et al., 2022), Orchard (Kulman et al., 2023), fastBE (Schmidt et al. 2024), and Sapling (Qi et al. 2024)

Solving the PPR problem is the key computational bottleneck in phylogeny 
inference algorithms.
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For example, when a least-squares loss is used
e.g. as in CITUP (Malikic et al., 2015), PairTree 
(Wintersinger et al., 2022), and Orchard (Kulman et 
al., 2023) 

the PPR problem is solved in polynomial time using either quadratic programming or 
specialized solvers.

For example, when a binomial loss is used
e.g. as in Sapling (Qi et al. 2024) 
or PairTree (Wintersinger et al., 
2022)

the PPR problem is solved using general purpose convex optimization software.

The perfect phylogeny regression problem

Pitfall #1: Does not model read counts

Pitfall #2: General purpose solvers are slow
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Contributions

We introduce a new approach to the Perfect Phylogeny Regression problem, fastppm, using 
tree structured dual dynamic programming (TSDDP). Compared to existing methods:

1. fastppm provides asymptotic and empirical (50-100x speed-up) speedups for the most 
commonly used L2  loss function.

2. fastppm is able to model arbitrary, convex loss functions, while maintaining its 
performance.

On simulated data, replacing existing solvers with fastppm yields up to 400x speed-ups and 
enables fast + accurate phylogenetic inference from low-coverage bulk DNA sequencing data.
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Tree structured dual dynamic programming (TSDDP)
For simplicity, we study the PPR problem in the case of a single sample:

Then, our optimization problem is

(PPR)

In TSDDP, we first construct the dual optimization problem  

(Dual-PPR)

where π(i) is the parent of vertex i in T and hi is conjugate to Li. 

.
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and TSDDP then computes the functions Ji in a bottom-up fashion.

which is the optimal solution to the dual problem for the subtree rooted at vertex i, 
provided the dual variable of the parent of vertex i takes value γ. Then, this function 
satisfies the recurrence relation

(Recurrence Relation)

Specifically, we define
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For the weighted least squares loss, we solve the PPR problem in 𝒪(n3/2log(log(n))) time* 
over classes of random trees:

Tree structured dual dynamic programming (TSDDP)

Best known: 𝒪(n2)
Our result:    𝒪(n3/2log(log(n)))

For the piecewise linear loss with k pieces, we solve the PPR problem in 𝒪(mnlog2(nk)) 
time deterministically:

Best known: 𝒪(n3/2) 
Our result:    𝒪(nlog2(nk)) 

* n is the number of clones in the clone tree T.* n is the number of clones in the clone tree T.
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Extensions to arbitrary, convex loss functions

Approach #1: Piecewise Linear 
Approximation (k-PLA and PPLA)

Approximate one-dimensional convex loss 
function Li(f) with piecewise linear 
approximation using k pieces found via Taylor 
series expansion. Bound on approximation 
error if function is L-lipschitz.

Approach #2: Structured Regression using 
Alternating Directions Method of Multipliers 
(ADMM) 

Using ADMM, we reduce solving the Perfect 
Phylogeny Regression problem for arbitrary 
convex loss functions to a sequence of L2 
subproblems.
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Fast regression under the perfect phylogeny model

Results (L2 / least squares loss):

● fastppm achieved a 40-125x speed 
up over the next best performing 
method projectppm.

● All methods achieved the exact 
same objective value on all 
instances.

● Blackbox convex optimization 
solvers were significantly slower 
than projectppm and fastppm.

● Excludes model build time which is 
in practice non-negligible for 
blackbox solvers.

Figure: Runtime of existing methods for the 
Perfect Phylogeny Regression problem when 
varying the number of clones/mutations.



Improving existing phylogeny inference methods with 
fastppm

Figure: Number of successful instances within a twelve hour time limit, runtime, and accuracy of 
Sapling compared to Sapling* on simulated data.

We replaced calls to existing perfect phylogeny regression algorithms in 
Sapling, CITUP, and Orchard with calls to fastppm:
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Improving existing phylogeny inference methods with 
fastppm

Figure: Number of successful instances within a twelve hour time limit, runtime, and accuracy of 
Orchard compared to Orchard* on simulated data.
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Sapling, CITUP, and Orchard with calls to fastppm:



fastppm improves frequency estimation in low coverage 
settings 
Downsampled reads from a patient derived xenograft (POP66) is a mouse model 
of colorectal cancer (n = 64 mutations, m = 8 samples, 50x coverage):

We applied Orchard, Orchard*, which use the L2 loss, to Sapling*, which uses the 
binomial loss, to recover the clonal tree and mutation frequencies.

Method Metric Objective

Data from: (Rehman et al. 2021)
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1. Do not directly model the read count data, which e.g. hinders analysis of 
low-coverage DNA sequencing

2. Employ slow, black-box convex optimization software which do not exploit 
the structure of the regression problem

However, existing methods for the PPR problem are flawed

Example 1.
State-of-the-art phylogeny inference pipelines CITUP, AncesTree, CALDER, Pairtree, 
Orchard, and fastBE use the following two loss functions:

Observed 
frequency (VAF)

which do not directly model the read count data, instead collapsing it to a frequency.
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Example 2.
In contrast, phylogeny inference pipelines (e.g. Sapling, PhyloWGS) which model 
observations using the probabilistic read-count model vij~ Binomial(fij, dij), e.g.,

must resort to blackbox convex optimization software which is prohibitively slow. 

However, existing methods for the PPR problem are flawed

1. Do not directly model the read count data, which e.g. hinders analysis of 
low-coverage DNA sequencing

2. Employ slow, black-box convex optimization software which do not exploit 
the structure of the regression problem



Tree structured dual dynamic programming (TSDDP)
Then, we solve the dual problem with a bottom-up dynamic programming algorithm 
over T. 

The TSDDP Algorithm


