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Reconstructing the evolutionary history of a tumor is a

challenging and important open question

Tumor Phylogeny
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Clone = group of cells with identical genotypes




Bulk DNA sequencing yields a mixture of cells, requiring
simultaneous inference of clones and their proportions
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Bulk DNA sequencing yields a mixture of cells, requiring
simultaneous inference of clones and their proportions
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Perfect Phylogeny Mixture Model
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* This model is implicit or explicit in: PhyloSub (Jiao et al.. 2014), PhyloWGS (Deshwar et al., 2015), CITUP (Malikic et al., 2015), LICHeE (Popic et al.,. 2015), AncesTree (El-Kebir et
al.2015), Canopy (Jiang et al.,2016), PairTree (Wintersinger et al., 2022), Orchard (Kulman et al., 2023), fastBE (Schmidt et al. 2024), ...
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The perfect phylogeny regression problem
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The perfect phylogeny regression problem
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Trees are scored by repeatedly* solving the perfect phylogeny regression

problem:
(PPR)

min{L(F | V,D): F = UB,U > 0, UL < 1}

SCORES

Score & rank trees

L(F, |V, D)=0.25

L(F, | V,D)=0.73

L(Fz|V,D)=0.95
by fitting frequencies
F to trees

* This approach is taken in CITUP (Malikic et al., 2015), LICHeE (Popic et al.,. 2015), AncesTree (El-Kebir et al.2015), PairTree
(Wintersinger et al., 2022), Orchard (Kulman et al., 2023), fastBE (Schmidt et al. 2024), and Sapling (Qi et al. 2024)

13



The perfect phylogeny regression problem
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Trees are scored by repeatedly* solving the perfect phylogeny regression

problem:
(PPR)

min{L(F | V,D): F = UB,U > 0, UL < 1}

Solving the PPR problem is the key computational bottleneck in phylogeny

inference algorithms.

* This approach is taken in CITUP (Malikic et al., 2015), LICHeE (Popic et al.,. 2015), AncesTree (El-Kebir et al.2015), PairTree 14
(Wintersinger et al., 2022), Orchard (Kulman et al., 2023), fastBE (Schmidt et al. 2024), and Sapling (Qi et al. 2024)



The perfect phylogeny regression problem

For example, when a least-squares loss is used

2 e.g. as in CITUP (Malikic et al., 2015), PairTree
v
LEIVD) =303 (1 - 52)

(Wintersinger et al., 2022), and Orchard (Kulman et
i=1j=1 di al., 2023)

the PPR problem is solved in polynomial time using either quadratic programming or
specialized solvers.



The perfect phylogeny regression problem

For example, when a least-squares loss is used

2 e.g. as in CITUP (Malikic et al., 2015), PairTree
v
LEIVD) =303 (1 - 52)

(Wintersinger et al., 2022), and Orchard (Kulman et
i=1j=1 di al., 2023)

the PPR problem is solved in polynomial time using either quadratic programming or
specialized solvers.
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L(F|V,D)=- Z Z (vij log(fij) + (di; — vij) log(1l — fij)) or PairTree (Wintersinger et al.,
=1g=1 2022)

the PPR problem is solved using general purpose convex optimization software.
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We introduce a new approach to the Perfect Phylogeny Regression problem, fastppm, using
tree structured dual dynamic programming (TSDDP).
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We introduce a new approach to the Perfect Phylogeny Regression problem, fastppm, using
tree structured dual dynamic programming (TSDDP). Compared to existing methods:

1. fastppm provides asymptotic and empirical (50-100x speed-up) speedups for the most
commonly used L, and L loss functions.
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1. fastppm provides asymptotic and empirical (50-100x speed-up) speedups for the most
commonly used L, and L, loss functions.

2. fastppm is able to model arbitrary, convex loss functions, while maintaining its
performance.
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We introduce a new approach to the Perfect Phylogeny Regression problem, fastppm, using
tree structured dual dynamic programming (TSDDP). Compared to existing methods:

1. fastppm provides asymptotic and empirical (50-100x speed-up) speedups for the most
commonly used L, and L, loss functions.

2. fastppm is able to model arbitrary, convex loss functions, while maintaining its
performance.

On simulated data, replacing existing solvers with fastppm yields up to 400x speed-ups and
enables fast + accurate phylogenetic inference from low-coverage bulk DNA sequencing data.



Tree structured dual dynamic programming (TSDDP)

For simplicity, we study the PPR problem in the case of a single sample:
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Then, our optimization problem is

(PPR)  min {337, Li(fs) : £© =u'B,u>0,u’1 <1}
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For simplicity, we study the PPR problem in the case of a single sample:
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Then, our optimization problem is

(PPR) ,min {37, Li(f) : £ =u'B,u>0,u’1 <1},

In TSDDP, we first construct the dual optimization problem

aeRn—}—l

(Dual-PPR) max {—ao+ Y hi(ai — ax@) o >0}
=1

where 17(i) is the parent of vertex j in T and h.is conjugate to L.



Tree structured dual dynamic programming (TSDDP)
Example. .

VARIABLES:

do, Gy, 4y, A3, A4, ON VERTICESOF T
OBJECTIVE:

hy(a,-ap) + hy(as-ay) + hs(asz-a,) + h(as-a,)
CONSTRAINTS:

0,=20,0,>20,0,20,0:20,0,=20

Clone Tree T



Tree structured dual dynamic programming (TSDDP)

Example. GO‘
VARIABLES:
do, Gy, 4y, A3, A4, ON VERTICESOF T
OBJECTIVE:
h,(ay-ao) + hy(ay-ay) + hs(as-a,) + h,(a,-a;)
CONSTRAINTS:
0,20,0,20,0,20,0:20,a,20

Clone Tree T

Key Idea: Solve the dual problem with a bottom-up dynamic programming
algorithm over the clone tree T.



Tree structured dual dynamic programming (TSDDP)

. a .
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Specifically, we define

Ji(7) £ max{3; e piy iy — on()) : @niy =}

which is the optimal solution to the dual problem for the subtree rooted at vertex i,
provided the dual variable of the parent of vertex i takes valuey.
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0,20,0,20,0,20,03>20,0,=20
Clone Tree T

Specifically, we define
Ji(7) £ max{3; e piy iy — on()) : @niy =}

which is the optimal solution to the dual problem for the subtree rooted at vertex i,
provided the dual variable of the parent of vertex i takes value y. Then, this function
satisfies the recurrence relation

Ji(v) = max{hi(os =) + 3550 Ji (i)}

and TSDDP then computes the functions J. in a bottom-up fashion.



Tree structured dual dynamic programming (TSDDP)

For the weighted least squares loss, we solve the PPR problem in /{n*?log(log(n))) time*
over classes of random trees:

Efficient Projection onto the Perfect Phylogeny Model B e St kn own: (0( n 2)

Our result:  ?(n*?log(log(n)))

Bei Jia* Surjyendu Ray Sam Safavi José Bento
jiabe@bc.edu  raysc@bc.edu safavisa@bc.edu  jose.bento@bc.edu
Boston College

* nis the number of clones in the clone tree T.
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For the weighted least squares loss, we solve the PPR problem in /{n*?log(log(n))) time*
over classes of random trees:

Efficient Projection onto the Perfect Phylogeny Model B e St k nown: ﬁ( n 2)

: 312
Bei Jia* Surjyendu Ray Sam Safavi José Bento 0 u r res u It - @( n | Og ( | Og ( n ) ) )

jiabe@bc.edu  raysc@bc.edu safavisa@bc.edu  jose.bento@bc.edu
Boston College

For the piecewise linear loss with k pieces, we solve the PPR problem in /{nlog?(nk)) time
deterministically:

A regression based approach to phylogenetic Best known: /ﬂ(nw)
reconstruction from multi-sample bulk DNA Our result:  ¢(nlog?(nk))
sequencing of tumors

* nis the number of clones in the clone tree T.



Extensions to arbitrary, convex loss functions

Approach #1: Piecewise Linear
Approximation (k-PLA and PPLA)
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Approximate one-dimensional convex loss
function L (f) with piecewise linear
approximation using k pieces found via Taylor
series expansion.



Extensions to arbitrary, convex loss functions

Approach #1: Piecewise Linear
Approximation (k-PLA and PPLA)

— L()
— G2(f)

02 04 06 08 1.0

Approximate one-dimensional convex loss
function L (f) with piecewise linear
approximation using k pieces found via Taylor
series expansion.

Approach #2: Structured Regression using
Alternating Directions Method of Multipliers
(ADMM)

ADMM:
gl = argmin, L,(z,2",3") // x-minimization
Z¢tl = argmin, L,(z*t1, 2,9%) // z-minimization
Yot = yF + p(Ax*H + B2** —¢)  // dual update

Using ADMM, we reduce solving the Perfect

Phylogeny Regression problem for arbitrary
convex loss functions to a sequence of L,
subproblems.



Fast regression under the perfect phylogeny model

Results (L, / least squares loss):

fastppm achieved a 40-125x speed
up over the next best performing
method projectppm.

All methods achieved the exact
same objective value on all
instances.

Blackbox convex optimization
solvers were significantly slower
than projectppm and fastppm.
Excludes model build time which is
in practice non-negligible for
blackbox solvers.

Runtime (s)
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Figure: Runtime of existing methods for the
Perfect Phylogeny Regression problem when
varying the number of clones/mutations.



Improving existing phylogeny inference methods with
fastppm

We replaced calls to existing perfect phylogeny regression algorithms in

Sapling, CITUP, and Orchard with calls to fastppm:
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Figure: Number of successful instances within a twelve hour time limit, runtime, and accuracy of
Sapling compared to Sapling* on simulated data.
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Orchard compared to Orchard* on simulated data.



fastppm improves frequency estimation in low coverage

settings
Downsampled reads from a patient derived xenograft (POP66) is a mouse model
of colorectal cancer (n = 64 mutations, m = 8 samples, 50x coverage):

Palpable tumor Method Metric Objective
PDX model (100mm?)
TraSp'a"t Orchard* IF — 7|2 3.092
Orchard |IF — F|2% 2.448
Sapling* |F — )% 2.181
Orchard* —logP(V | 7,F,D) 10790.9
Orchard —logP(V | 7,F,D) 10793.5
Data from: (Rehman et al. 2021) Sapling” —logP(V |7,F,D) 10720.6

We applied Orchard, Orchard®, which use the L, loss, to Sapling®, which uses the
binomial loss, to recover the clonal tree and mutation frequencies.
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However, existing methods for the PPR problem are flawed

1. Do not directly model the read count data, which e.g. hinders analysis of
low-coverage DNA sequencing




However, existing methods for the PPR problem are flawed

1. Do not directly model the read count data, which e.g. hinders analysis of
low-coverage DNA sequencing

Example 1.

State-of-the-art phylogeny inference pipelines CITUP, AncesTree, CALDER, Pairtree,
Orchard, and fastBE use the following two loss functions:

Li(F,V,D) =Y > |fij — fi;| where fi; = vi;/di;

i=1j5=1
LQ(F,V,D) = Z Z wq;j(fz'j = fij)z Where fij = ’Uij/dij, wij Z 0
1=1j5=1

which do not directly model the read count data, instead collapsing it to a frequency.



However, existing methods for the PPR problem are flawed

1. Do not directly model the read count data, which e.g. hinders analysis of
low-coverage DNA sequencing

2. Employ slow, black-box convex optimization software which do not exploit
the structure of the regression problem

Example 2.

In contrast, phylogeny inference pipelines (e.g. Sapling, PhyloWGS) which model
observations using the probabilistic read-count model Vi~ Binomial(fij, dij), e.g.,

Lpin(F,V,D) = — ) ) “[v;; log fi; + (dij — vi;) log(1 — fi;)].

i=1j=1

must resort to blackbox convex optimization software which is prohibitively slow.



Tree structured dual dynamic programming (TSDDP)

Then, we solve the dual problem with a bottom-up dynamic programming algorithm
over T.

(i) Fix a representation R(J;) for each J;.

(ii) Compute the representation R(J;) at the leaf nodes.

(iii) Compute the representation R(J;) at a node 1
provided the representations R(J;) at all children
Jj € 6(9).

(iv) Solve the one-dimensional optimization problem
maxXa,>0{—oo + Jr(ao)} using the representation of
the root node R(J,).

The TSDDP Algorithm




