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Reconstructing the evolutionary history of a tumor is a

challenging and important open question
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Bulk DNA sequencing yields a mixture of cells, requiring
simultaneous inference of clones and their proportions

Tumor samples




Bulk DNA sequencing yields a mixture of cells, requiring
simultaneous inference of clones and their proportions

Tumor samples

- N mutations

JON A A A A
51 (@O@/’ Sq (0.6 0 0 0

\s__—’
g S| 0.6 04 02 0.2
~ N
s ,’\ I S3\0.8 04 02 [0.2
2 \Q@Q} Sery Frqugg@yrﬁétrix F

~ - .
bl l Sequencing

samples

f’“ Variant allele frequency (VAF)\

S3 ,zz==, [ GCJGACGT |
e O S, [GACGTGG |
l ;7 [GCAGACGT |
‘\6’ [ITACGTGGA |
- TGCGGACG
[ ..GAGAAAGCTGCGACGTGGACGA... |
A
VAF(A) = # reads with A 1

\_ # reads covering position - gj




Bulk DNA sequencing yields a mixture of cells, requiring
simultaneous inference of clones and their proportions
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Variant allele frequency (VAF) factorization model*
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* This model is implicit or explicit in: PhyloSub (Jiao et al., BMC Bioinform. 2014), PhyloWGS (Deshwar et al.,
Genome Biol. 2015), CITUP (Malikic et al., Bioinformatics 2015), LICHeE (Popic et al., Genome Biol. 2015),
AncesTree (El-Kebir et al., Bioinformatics 2015), Canopy (Jiang et al., PNAS 2016), ClonEvol (Dang et al., Ann.

Oncol. 2017), CALDER (Myers et al., Cell Systems, 2019), PairTree (Wintersinger et al., Blood Cancer Discovery,
2022), Orchard (Kulman et al., 2023), ...
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Variant allele frequency (VAF) factorization model*

mutations clones mutations
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Infinite sites
VAF factorization problem (VAFFP). Given an m-by-n frequency assumption
matrix F', find an m-by-n usage matrix U and clonal matrix B such that
F=UB.

* This model is implicit or explicit in: PhyloSub (Jiao et al., BMC Bioinform. 2014), PhyloWGS (Deshwar et al.,
Genome Biol. 2015), CITUP (Malikic et al., Bioinformatics 2015), LICHeE (Popic et al., Genome Biol. 2015),
AncesTree (El-Kebir et al., Bioinformatics 2015), Canopy (Jiang et al., PNAS 2016), ClonEvol (Dang et al., Ann.

Oncol. 2017), CALDER (Myers et al., Cell Systems, 2019), PairTree (Wintersinger et al., Blood Cancer Discovery,
2022), Orchard (Kulman et al., 2023), ...



Existing approaches for solving the VAF factorization
problem, however, suffer from two important drawbacks

Drawback 1. Inability to scale to
datasets with a large number of
samples, clones, or mutations.
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(Wintersinger et al. 2022): Existing methods fail to scale to
datasets with more than 10 mutations!
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CALDER and CITUP perform poorly in terms of ancestral
reconstruction accuracy, and do not improve as the ratio of
samples to clones increases.



Existing approaches for solving the VAF factorization
problem, however, suffer from two important drawbacks

Drawback 1. Inability to scale to
datasets with a large number of
samples, clones, or mutations.

Drawback 2. Poor phylogenetic
reconstruction accuracy and little
robustness to error.
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Contributions.

A structured regression model and a new method, fastBE (fast bulk
evolution), for phylogenetic reconstruction from bulk DNA sequencing data,

which:

1. Scales to large instances
containing thousands of mutations
and hundreds of samples.

2. Accurately reconstructs the
phylogenetic tree while staying robust
to error in the frequency matrix.

Method Reference Scalable?

Accurate?
fastBE This work Yes Yes
CITUP (Malikic et al. 2015) No Depends
LICHeE (Popic et al. 2015) No Unknown
AncesTree  (El-Kebir et al. 2015) No Unknown
CALDER (Myers et al. 2019) No Depends
PhyloWGS (Deshwar et al. 2015) Moderately No
PASTRI (Satas et al. 2017) No No
Pairtree (Wintersinger et al. 2022) Moderately Yes
Orchard (Kulman et al. 2023) Yes Yes

A summary of where existing methods land in terms of scalability
and accuracy. *fastBE is several orders of magnitude faster than

Orchard.
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The ¢ -VAF factorization problem ( -VAFFP)

mutations clones mutations
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¢1-VAF factorization problem. Given an m-by-n frequency matrix
F, find an m-by-n usage matrix U* and n-clonal matrix B* such that,

U*,B* =argmin{|FF —UB|1: U >0,Ul <1, B is a clonal matrix.}.
U,B
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¢1-VAF factorization problem. Given an m-by-n frequency matrix
F, find an m-by-n usage matrix U* and n-clonal matrix B* such that,

U*,B* = argmin{||FF —UB||; : U > 0,Ul <1, B is a clonal matrix.}.
U,B

Differences in problem formulation from existing combinatorial methods:
e No hard constraints on the error matrix € = F - UB, as opposed to CALDER or

AncesTree
e { -norm of error matrix € induces sparsity, as opposed to CITUP which uses the

Kz—norm
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A structured regression model for the £ -VAFFP

To solve the NP-hard {,-VAFFP, we draw an analogy to the structured regression
models used in distance based phylogenetics, which solves the NP-hard
minimum evolution problem:

Observed Data
g species
k= S; S22 Sz S;4 S5
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uﬁ QS| — dyo dyz day dos
g é Ss| — — ds3 d3q dss
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Distance Vector d

Problem: Find the tree whose
induced distances best match the
observed distance matrix D.
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A structured regression model for the £ -VAFFP

To solve the NP-hard {,-VAFFP, we draw an analogy to the structured regression
models used in distance based phylogenetics, which solves the NP-hard
minimum evolution problem:

Procedure for Distance Based

Observed Data Ph Iogenetics
S species 1. Fix a tree 'ly 2. Construct linear system 3. Regression problem
.1: 57 52 53 54 55 S-| 52 -~ o
% " S diyy dip diz diyg dis %’2 =1+ 23 Find branch Ieng'Fhs
lﬁ % So| = dyy doz doy dos dig = o + T3 + T5 +17 x; such that the distance,
S _ — ~ —
g §53 - djs 234 235 Qs = @2+ 13 + 05 + 74 |d — Arx||2
£ ‘ 44 745 is minimized.
g Ss - — — — (155 @(7(//’/
>3 Distance Matrix D ~ ‘9/@/7[/
d475 = Tg + XTr ¢
(d'll’ d1*2’ B d575> X7 Unrooted where x; are the non-negative -~
Distance Vector d o, Phylogenetic branch lengths d= Arx

Problem: Find the tree whose Tree T

induced distances best match the -~
observed distance matrix D.

4. Perturb tree and repeat
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A structured regression model for the £ -VAFFP

Replacing the distance matrix with the frequency matrix F and the branch lengths
with the usage proportions U suggests the following structured regression model
for the {,-VAFFP:

Observed Data

mutations

A A A A
4 57( Ju fiz fis fu )
852 Jor fa2 foz foa
8 s\ far fs2 Sz [

Frequency Matrix F

¢, VAFFP

Problem: Find the tree and usage
matrix which best describes the
frequency matrix F.
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A structured regression model for the £ -VAFFP

Replacing the distance matrix with the frequency matrix F and the branch lengths
with the usage proportions U suggests the following structured regression model

for the {,-VAFFP:
Procedure for Tumor Phylogenetics

Observed Data . .
. 1. Fixatree T 2. Construct linear system 3. Regression problem
mutations
A A A A ﬁ = U171b1 + U]ygbg + U1$3b3 + U1’4b4 Given F and By,

T by 4 s ob b b find the usage matrix
J2 = uz1by + ug2by + uazbs + u2abs ( guch that the error,

f3 = uz1b1 + ug2be + u3 303 + us3 404 |F'— UBr|
is minimized.

Sy f11 f12 f13 f14
ol for foo faz o fau
ss\ fs1 fas2 faz [

Frequency Matrix F

¢, VAFFP
samples

where u;;are non-negative
usage proportions

4-Clonal Tree T

Problem: Find the tree and usage
matrix which best describes the -
frequency matrix F. 4. Perturb tree and repeat
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A structured regression model for the £ -VAFFP

Replacing the distance matrix with the frequency matrix F and the branch lengths
with the usage proportions U suggests the following structured regression model

for the {,-VAFFP:
Procedure for Tumor Phylogenetics

Observed Data . .
. 1. Fixatree T 2. Construct linear system 3. Regression problem
mutations
A A A A J/t\l = U171b1 + U172b2 + U1’3b3 + U1’4b4 Given F and BTv

T — o 1br 4 o obo - s b 4 U 1b find the usage matrix
Jo = uzaby +ua by uzsbs + Uuaabs  guch that the error,

f3 = uz1b1 + ug2be + u3 303 + us3 404 |F'— UBr|
is minimized.
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Frequency Matrix F

¢, VAFFP
samples

where u;;are non-negative
usage proportions

4-Clonal Tree T

Problem: Find the tree and usage
matrix which best describes the -
frequency matrix F. 4. Perturb tree and repeat

To make this procedure scale, we need an efficient algorithm for the regression
problem. 18



samples

A structured regression problem:

problem
mutations clones mutations
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¢1-VAF regression problem. Given an m-by-n frequency matrix F
and an n-by-n clonal matrix B, find an m-by-n usage matrix U* such
that,
U* =argmin{||FF —UB|::U >0,Ul <1}.
U

the {,-VAF regression

Clone Tree T
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A structured regression problem: the {,-VAF regression
problem
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¢1-VAF regression problem. Given an m-by-n frequency matrix F
and an n-by-n clonal matrix B, find an m-by-n usage matrix U* such
that,
U* =argmin{||FF —UB|::U >0,Ul <1}.
U

In contrast to the {,-VAF factorization problem, this regression problem is

solvable in polynomial time via linear programming... -



A structured regression problem: the {,-VAF regression
problen

¢1-VAF regression problem. Given an m-by-n frequency matrix F
and an n-by-n clonal matrix B, find an m-by-n usage matrix U* such
that,

U* = argmin{||FF - UB|;:U >0,Ul <1}
U

e { -VAF regression problem is solvable in polynomial time with a linear



A structured regression problem: the {,-VAF regression

problen
¢1-VAF regression problem. Given an m-by-n frequency matrix F
and an n-by-n clonal matrix B, find an m-by-n usage matrix U* such
that,
U* =argmin{||F - UB|;:U 20,Ul <1}.
U
o

{,-VAF regression problem is solvable in polynomial time with a linear
program
Linear nroarammina does not expoloit the structure of the clonal matrix B...
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A structured regression problem: the {,-VAF regression
problen

¢1-VAF regression problem. Given an m-by-n frequency matrix F
and an n-by-n clonal matrix B, find an m-by-n usage matrix U* such
that,
U* =argmin{||F - UB|;:U 20,Ul <1}.
U

e [ -VAF regression problem is solvable in polynomial time with a linear

program
e Linear programming does not exploit the structure of the clonal matrix B...
l.Fixatree T 2. Regression problem
Given F and By, \ . .
find the usage matrix ... Since regression problem is
U such that the error, solved many times, need an
|F' = UBr|

extremely fast algorithm

is minimized.

4-C|OHGU

3. Perturb tree and repeat
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An ultrafast algorithm for the £,-VAF regression problem

By exploiting the structure in the clonal matrix B appearing in the regression
problem..

* Theorem 1. Given a clonal tree T with n vertices and an m-by-n frequency matrix F, the minimum
Li(F,By) =min{||F - UBg||, : U > 0,U1 < 1}

can be found in O(mnd) where d is the depth of T .

... We obtain an algorithm for the {,-VAF regression problem which outperforms
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An ultrafast algorithm for the £,-VAF regression problem

By exploiting the structure in the clonal matrix B appearing in the regression
problem..

* Theorem 1. Given a clonal tree 7 with n vertices and an m-by-n frequency matrix F, the minimum
LI (F,By) =min{||F -UBg||, : U 2 0,U1 < 1}

can be found in O(mnd) where d is the depth of T .

... We obtain an algorithm for the {,-VAF regression problem which outperforms

1. Fixatree T 2. Regression problem

Given F and By,
find the usage matrix
U such that the error,

|IF = UBrl)x

is minimized.

4-Clonal Tree T
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An ultrafast algorithm for the £,-VAF regression problem

Second, our regression algorithm is more efficient in the online setting where the
tree undergoes slight perturbations...

Corollary 1. Given a clonal tree 7 with n vertices and an m-by-n frequency matrix F, the following queries can be
efficiently answered after O(mnd) pre-processing time using O(mnd) space.

(i) For a subtree prune-and-regraft (SPR) operation on vertices i and j which results in a tree 7', the minimum
L} (F,Bg~) can be queried in O(md - max{d(i),d(j)}) time.

(ii) For the operation of attaching a new vertex j as a child of a vertexi to obtain a tree 7" and appending a corresponding
column to the frequency matrix F to obtain F’, the minimum L} (F’, Bg-) can be queried in O(md - d(i)) time.

26



An ultrafast algorithm for the £,-VAF regression problem

Second, our regression algorithm is more efficient in the online setting where the
tree undergoes slight perturbations...

Corollary 1. Given a clonal tree 7 with n vertices and an m-by-n frequency matrix F, the following queries can be
efficiently answered after O(mnd) pre-processing time using O(mnd) space.

(i) For a subtree prune-and-regraft (SPR) operation on vertices i and j which results in a tree 7', the minimum
L} (F,Bg~) can be queried in O(md - max{d(i),d(j)}) time.

(ii) For the operation of attaching a new vertex j as a child of a vertexi to obtain a tree 7" and appending a corresponding
column to the frequency matrix F to obtain F’, the minimum L} (F’, Bg-) can be queried in O(md - d(i)) time.

1. Fixatree T 2. Regression problem

b1 Given F and By,
A find the usage matrix . . . .
) U such that the error, | ==+ maklng our regressmp algorlthm fit for
N |F' = UBrl|x solving the harder factorization problem.
bs (39) @) b is minimized.

4-C|0na:i_/

3. Perturb tree and repeat
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An ultrafast algorithm for the £,-VAF regression problem

Theorem 1. Given a clonal tree T with n vertices and an m-by-n frequency matrix F, the minimum
Li(F,By) =min {||F - UBy||, : U 2 0,U1 < 1}

can be found in O(mnd) where d is the depth of T .

A technical comparison of our algorithm to other approaches:

1. Depth d = n"?log(n) for almost all trees (Chung et al., Journal of Graph
Theory, 2012)

2. Fastest LP solvers have O(mn?#°) time complexity: outperform both
asymptotically and empirically

3. Fastest known algorithm (Jia et al. NeurlPS 2018) for the {, regression
problem runs in O(mn?) time — does not handle online setting

28



fastBE a scalable method for the 21-VAF factorization

Qgﬂg)l)%mwuctured regression framework, we develop a simple greedy algorithm,
fastBE (fast Bulk Evolution), for the {,-VAF factorization problem...
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fastBE a scalable method for the 21-VAF factorization

Qgﬂg)l)%mwuctured regression framework, we develop a simple greedy algorithm,
fastBE (fast Bulk Evolution), for the {,-VAF factorization problem...
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fastBE a scalable method for the 21-VAF factorization

Qgﬂg)l)%mtructured regression framework, we develop a simple greedy algorithm,
fastBE (fast Bulk Evolution), for the {,-VAF factorization problem...

Step 1. Fix a

mutation
ordering

&
<

My A
my A
ms A
m4A
ms A\

Current Tree

Step 2. For each mutation, enumerate all
mutation ordering candidate trees obtained by the mutation's addition

A

A

@)

@ @

Candidate #1
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fastBE a scalable method for the 21-VAF factorization

Qgﬂg)l)%mtructured regression framework, we develop a simple greedy algorithm,
fastBE (fast Bulk Evolution), for the {,-VAF factorization problem...

Step 1. Fix a

mutation
ordering
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Current Tree

Step 2. For each mutation, enumerate all
mutation ordering candidate trees obtained by the mutation's addition

A

A

@)

u
.
A
V3
A

DO @ @

Candidate #1 Candidate #2 Candidate #K
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fastBE a scalable method for the 21-VAF factorization

Qgﬂg)l)%mtructured regression framework, we develop a simple greedy algorithm,
fastBE (fast Bulk Evolution), for the {,-VAF factorization problem...
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fastBE a scalable method for the 21-VAF factorization

Qgﬂg)l)%mtructured regression framework, we develop a simple greedy algorithm,
fastBE (fast Bulk Evolution), for the {,-VAF factorization problem...

Step 1. Fix a Step 2. For each mutation, enumerate all
mutation ordering candidate trees obtained by the mutation's addition
m
So| ™A Ak . .
55| m A Cr @)
Eo my A LS) 4 Al A A
LA & @ &) @
5 Candidate #1 Candidate #2 Candidate #K
L (F, By): 1.7 055 + -+ 23
Update
current Tree Step 3. Greedily pick best candidate

using fast regression algorithm, repeat
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Empirical Results



Count

Our structured regression algorithm outperforms state of
the art linear programming solvers
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Left: Relative runtime to solve ¢, VAF regression problem. Right: Absolute runtime to
solve {, VAF regression problem versus the number of samples and clones.
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fastBE outperforms existing methods on simulated data

F1 Score

1.0-|eesny ‘wee-e = 100000 A
h F !
P o.
0.8 1 39 o% a 80000 A
] : Algorithm
_ Ve : w [ fastBE
0.8 ‘ B a g Q00004 [ Pairtree
=] [ Orchard
0.44 3 40000 [0 CALDER
4 1 CITUP
0.2 - 20000 A
0= - -- g - - -
0.0 +— : . ; : 2 - : : : : : : :
3 5 10 20 30 50 100 250 500 1000 100 250 500 1000
Number of Clones/Mutations Number of Clones/Mutations

Left: Pairwise relationship error (F1) between simulated ground truth and inferred
trees. Right: Wall clock runtime (s) of fastBE and Orchard on instances with = 100
clones. 37



Evaluation on POPG66 colorectal cancer model from (Rehman
et al. Cell, 2021)

Sample fastBE Violation V' Pairtree Violation V
Patient (P0) 0.0761 0.1888
Xenograft (G0) 0.0180 0.0854
Vehicle tumor 1 0.3221 0.6967
Vehicle tumor 2 0.4277 0.8584
CPT-11 Regrowth 0.8822 0.8822
CPT-11 Resistant #1 0.5149 0.2640
CPT-11 Resistant #2 0.2704 0.7282
CPT-11 Resistant #3 0.4143 0.6897

Total violation of the sum condition for the fastBE and Pairtree
inferred phylogenetic trees on the POP66 colorectal cancer

model.
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Conclusion & Future Work

Contributions:

e \We developed a structured regression framework and associated theory for
phylogenetic reconstruction from bulk DNA sequencing data

e Using this framework, we developed a method, fastBE, that efficiently infers
phylogenies and outperforms existing methods in terms of both time and
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