A regression based approach to phylogenetic reconstruction from multi-sample bulk DNA sequencing of tumors

Henri Schmidt and Benjamin J. Raphael Department of Computer Science

Reconstructing the evolutionary history of a tumor is a challenging and important open question

Second Edicion

Theory and Pract

Bulk DNA sequencing yields a mixture of cells, requiring simultaneous inference of clones and their proportions

Bulk DNA sequencing yields a mixture of cells, requiring simultaneous inference of clones and their proportions

Bulk DNA sequencing yields a mixture of cells, requiring simultaneous inference of clones and their proportions

*Variant allele frequency (VAF) factorization model**

***** This model is implicit or explicit in: **PhyloSub** *(Jiao et al., BMC Bioinform. 2014)*, **PhyloWGS** *(Deshwar et al., Genome Biol. 2015)*, **CITUP** *(Malikic et al., Bioinformatics 2015)***, LICHeE** *(Popic et al., Genome Biol. 2015)***, AncesTree** *(El-Kebir et al., Bioinformatics 2015)***, Canopy** *(Jiang et al., PNAS 2016)***, ClonEvol** *(Dang et al., Ann. Oncol. 2017)***, CALDER** *(Myers et al., Cell Systems, 2019),* **PairTree** *(Wintersinger et al., Blood Cancer Discovery, 2022), Orchard (Kulman et al., 2023),* **…**

*Variant allele frequency (VAF) factorization model**

***** This model is implicit or explicit in: **PhyloSub** *(Jiao et al., BMC Bioinform. 2014)*, **PhyloWGS** *(Deshwar et al., Genome Biol. 2015)*, **CITUP** *(Malikic et al., Bioinformatics 2015)***, LICHeE** *(Popic et al., Genome Biol. 2015)***, AncesTree** *(El-Kebir et al., Bioinformatics 2015)***, Canopy** *(Jiang et al., PNAS 2016)***, ClonEvol** *(Dang et al., Ann. Oncol. 2017)***, CALDER** *(Myers et al., Cell Systems, 2019),* **PairTree** *(Wintersinger et al., Blood Cancer Discovery, 2022), Orchard (Kulman et al., 2023),* **…**

*Variant allele frequency (VAF) factorization model**

***** This model is implicit or explicit in: **PhyloSub** *(Jiao et al., BMC Bioinform. 2014)*, **PhyloWGS** *(Deshwar et al., Genome Biol. 2015)*, **CITUP** *(Malikic et al., Bioinformatics 2015)***, LICHeE** *(Popic et al., Genome Biol. 2015)***, AncesTree** *(El-Kebir et al., Bioinformatics 2015)***, Canopy** *(Jiang et al., PNAS 2016)***, ClonEvol** *(Dang et al., Ann. Oncol. 2017)***, CALDER** *(Myers et al., Cell Systems, 2019),* **PairTree** *(Wintersinger et al., Blood Cancer Discovery, 2022), Orchard (Kulman et al., 2023),* **…**

Existing approaches for solving the VAF factorization problem, however, suffer from two important drawbacks

Drawback 1. Inability to scale to datasets with a large number of samples, clones, or mutations.

(Wintersinger et al. 2022): Existing methods fail to scale to datasets with more than 10 mutations!

CALDER and CITUP perform poorly in terms of ancestral reconstruction accuracy, and do not improve as the ratio of samples to clones increases.

Existing approaches for solving the VAF factorization problem, however, suffer from two important drawbacks

Drawback 1. Inability to scale to datasets with a large number of samples, clones, or mutations.

Drawback 2. Poor phylogenetic reconstruction accuracy and little robustness to error.

(Wintersinger et al. 2022): Existing methods fail to scale to datasets with more than 10 mutations!

CALDER and CITUP perform poorly in terms of ancestral reconstruction accuracy, and do not improve as the ratio of samples to clones increases.

Contributions.

A **structured regression model** and a new method, **fastBE (fast bulk evolution),** for phylogenetic reconstruction from bulk DNA sequencing data, which:

1. Scales to large instances containing thousands of mutations and hundreds of samples.

2. Accurately reconstructs the phylogenetic tree while staying robust to error in the frequency matrix.

*A summary of where existing methods land in terms of scalability and accuracy. *fastBE is several orders of magnitude faster than Orchard.*

Differences in problem formulation from existing combinatorial methods:

- No hard constraints on the error matrix *ε = F UB,* as opposed to CALDER or AncesTree
- **●** ℓ_1 -norm of error matrix *ε* induces sparsity, as opposed to CITUP which uses the ℓ_2 -norm
- \sim 0 -norm implies robustness to error in frequency matrix *F*, which no method

To solve the NP-hard ℓ_1 -VAFFP, we draw an analogy to the *structured regression models* used in distance based phylogenetics, which solves the NP-hard minimum evolution problem:

Problem: Find the tree whose induced distances best match the observed distance matrix D.

To solve the NP-hard ℓ_1 -VAFFP, we draw an analogy to the *structured regression models* used in distance based phylogenetics, which solves the NP-hard minimum evolution problem:

Replacing the distance matrix with the frequency matrix *F* and the branch lengths with the usage proportions *U* suggests the following *structured regression model* for the $\ell_{\text{\tiny{1}}}$ -VAFFP:

Problem: Find the tree and usage matrix which best describes the frequency matrix **F.**

Replacing the distance matrix with the frequency matrix *F* and the branch lengths with the usage proportions *U* suggests the following *structured regression model* for the $\ell_{_1}$ -VAFFP:

Problem: Find the tree and usage matrix which best describes the frequency matrix F.

Procedure for Tumor Phylogenetics

Replacing the distance matrix with the frequency matrix *F* and the branch lengths with the usage proportions *U* suggests the following *structured regression model* for the $\ell_{_1}$ -VAFFP:

To make this procedure scale, we need an *efficient algorithm* for the regression problem.

A structured regression problem: the ℓ_{1} -VAF regression problem *The tree is now fixed*

A structured regression problem: the ℓ_{1} -VAF regression problem *The tree is now fixed*

In contrast to the ℓ_1 -VAF factorization problem, this regression problem is solvable in polynomial time via linear programming…

A structured regression problem: the ℓ_{1} -VAF regression

problem *Polynomial Time*

 ℓ_1 -VAF regression problem. Given an *m*-by-*n* frequency matrix F and an n-by-n clonal matrix B, find an m-by-n usage matrix U^* such that, $U^* = \arg \min \{ ||F - UB||_1 : U \ge 0, U \le 1 \}.$

● Linear programming does not exploit the structure of the clonal matrix *B…*

■ ℓ_1 -VAF regression problem is solvable in polynomial time with a *linear*

A structured regression problem: the ℓ_{1} -VAF regression

 ℓ_1 -VAF regression problem. Given an *m*-by-*n* frequency matrix F and an n-by-n clonal matrix B, find an m-by-n usage matrix U^* such *Time* that, $U^* = \arg \min \{ ||F - UB||_1 : U \ge 0, U \le 1 \}.$

problem

Polynomial

- ℓ_1 -VAF regression problem is solvable in polynomial time with a *linear program*
- Linear programming does not exploit the structure of the clonal matrix *B...*

A structured regression problem: the ℓ_{1} -VAF regression

problem. *Polynomial Time*

 ℓ_1 -VAF regression problem. Given an *m*-by-*n* frequency matrix F and an n-by-n clonal matrix B, find an m-by-n usage matrix U^* such that, $U^* = \arg \min \{ ||F - UB||_1 : U \ge 0, U \le 1 \}.$

- ℓ_1 -VAF regression problem is solvable in polynomial time with a *linear program*
- Linear programming does not exploit the structure of the clonal matrix *B...*

1. Fix a tree T

2. Regression problem

find the usage matrix U such that the error, $||F - UB_T||_1$

… Since regression problem is solved many times, need an extremely fast algorithm

3. Perturb tree and repeat

By exploiting the structure in the clonal matrix *B* appearing in the regression $problem...$ Theorem 1. Given a clonal tree $\mathcal T$ with n vertices and an m-by-n frequency matrix F, the minimum

 $L_1^*(F, B_T) = \min \{ ||F - UB_T||_1 : U \ge 0, U_1 \le 1 \}$

can be found in $O(mnd)$ where d is the depth of T .

 \ldots we obtain an algorithm for the ℓ_1 -VAF regression problem which outperforms state-of-the-art linear programming solvers in both theory and practice.

By exploiting the structure in the clonal matrix *B* appearing in the regression $problem...$ Theorem 1. Given a clonal tree $\mathcal T$ with n vertices and an m-by-n frequency matrix F, the minimum

 $L_1^*(F, B_{\mathcal{T}}) = \min \{ ||F - UB_{\mathcal{T}}||_1 : U \geq 0, U \mathbb{1} \leq 1 \}$

can be found in $O(mnd)$ where d is the depth of T.

 \ldots we obtain an algorithm for the ℓ_1 -VAF regression problem which outperforms state-of-the-art linear programming solvers in both theory and practice.

1. Fix a tree T 2. Regression problem

Given F and B_T , find the usage matrix U such that the error, $||F - UB_T||_1$ is minimized.

Our fast regression algorithm also serves as a useful "primitive" and "building block" in the development of other methods.

Second, our regression algorithm is more efficient in the *online* setting where the tree undergoes slight perturbations…

Corollary 1. Given a clonal tree T with n vertices and an m-by-n frequency matrix F, the following queries can be efficiently answered after $O(mnd)$ pre-processing time using $O(mnd)$ space.

- (i) For a subtree prune-and-regraft (SPR) operation on vertices i and j which results in a tree \mathcal{T}' , the minimum $L_1^*(F, B_{\mathcal{T}})$ can be queried in $O(md \cdot \max\{d(i), d(j)\})$ time.
- (ii) For the operation of attaching a new vertex j as a child of a vertex i to obtain a tree \mathcal{T}' and appending a corresponding column to the frequency matrix F to obtain F', the minimum $L_1^*(F', B_{\tau})$ can be queried in $O(md \cdot d(i))$ time.

Second, our regression algorithm is more efficient in the *online* setting where the tree undergoes slight perturbations…

Corollary 1. Given a clonal tree T with n vertices and an m-by-n frequency matrix F, the following queries can be efficiently answered after $O(mnd)$ pre-processing time using $O(mnd)$ space.

- (i) For a subtree prune-and-regraft (SPR) operation on vertices i and j which results in a tree \mathcal{T}' , the minimum $L_1^*(F, B_{\mathcal{T}})$ can be queried in $O(md \cdot \max\{d(i), d(j)\})$ time.
- (ii) For the operation of attaching a new vertex j as a child of a vertex i to obtain a tree \mathcal{T}' and appending a corresponding column to the frequency matrix F to obtain F', the minimum $L_1^*(F', B_{\tau})$ can be queried in $O(md \cdot d(i))$ time.

… making our regression algorithm fit for solving the harder factorization problem.

Theorem 1. Given a clonal tree T with n vertices and an m -by-n frequency matrix F, the minimum

 $L_1^*(F, B_{\mathcal{T}}) = \min \{ ||F - UB_{\mathcal{T}}||_1 : U \geq 0, U1 \leq 1 \}$

can be found in $O(mnd)$ where d is the depth of T .

A technical comparison of our algorithm to other approaches:

- 1. Depth *d ≈ n1/2log(n)* for almost all trees *(Chung et al., Journal of Graph Theory, 2012)*
- 2. Fastest LP solvers have *O(mn2.5)* time complexity: outperform both asymptotically and empirically
- 3. Fastest known algorithm *(Jia et al. NeurlPS 2018)* for the ℓ_2 regression problem runs in $O(mn^2)$ time – does not handle online setting

fastBE a scalable method for the ℓ_{1} -VAF factorization

problem using our structured regression framework, we develop a simple greedy algorithm, *fastBE (fast Bulk Evolution),* for the ℓ_{1} -VAF factorization problem...

fastBE a scalable method for the ℓ_{1} -VAF factorization

problem tructured regression framework, we develop a simple greedy algorithm, *fastBE (fast Bulk Evolution),* for the ℓ_{1} -VAF factorization problem...

fastBE a scalable method for the ℓ_{1} -VAF factorization problem tructured regression framework, we develop a simple greedy algorithm,

fastBE a scalable method for the ℓ_{1} -VAF factorization problem tructured regression framework, we develop a simple greedy algorithm,

fastBE a scalable method for the ℓ_{1} -VAF factorization problem tructured regression framework, we develop a simple greedy algorithm,

fastBE a scalable method for the ℓ_{1} -VAF factorization problem using our structured regression framework, we develop a simple greedy algorithm,

Empirical Results

Our structured regression algorithm outperforms state of the art linear programming solvers

Left: Relative runtime to solve $l₁$ VAF regression problem. Right: Absolute runtime to *solve ℓ1 VAF regression problem versus the number of samples and clones.*

fastBE outperforms existing methods on simulated data

Left: Pairwise relationship error (F1) between simulated ground truth and inferred *trees. Right: Wall clock runtime (s) of fastBE and Orchard on instances with ≥ 100* clones.

Evaluation on POP66 colorectal cancer model from *(Rehman et al. Cell, 2021)*

Total violation of the sum condition for the fastBE and Pairtree inferred phylogenetic trees on the POP66 colorectal cancer model.

38

Conclusion & Future Work

Contributions:

- We developed a structured regression framework and associated theory for phylogenetic reconstruction from bulk DNA sequencing data
- Using this framework, we developed a method, *fastBE,* that efficiently infers phylogenies and outperforms existing methods in terms of both time and accuracy on simulated and real data

fastBE is implemented in C++ and is available on GitHub

The manuscript is available on bioRxiv

Thank You

Group Members

The Raphael Lab

fastBE is implemented in C++ and is available on GitHub

The manuscript is available on bioRxiv